Hard | Probability |

You have 100 noodles in your soup bowl. You are told to take two ends of some noodles (each end on any noodle has the same probability of being chosen) in your bowl and connect them. You continue until there are no free ends. What is the expected number of loops? What is the probability of making one large loop which includes every noodle?

Hint

Expected number of noodles come from linearity of expectation. Probability comes from multiplying independent probabilities.

Solution

First calculate expected number of loops:

Denote X1 = identity variable, which takes value 1 every time a (long) noodle becomes a loop by connecting to its end, (if its own end is connected to some other noodle, then that other noodle's end will be considered). Thus, number of loops = X1 +...+ X100, thus, expected number of loops = E(X1) + ... + E(X100). This will give answer = 1/(2N-1) + 1/(2N-3) + ... + 1/3 + 1

where N = 100. This formula can also be proved using induction.

Calculating Probability of single large loop:

If you followed last result, this one is simple, this time all the identitiy variables are zero except last one. Thus probability is [1 - 1/(2N-1)]*[ 1 - 1/(2N-3)]* ... *[1-1/3]

= Product ( i = 2 to N) [ (2i-2) / (2i-1)]

Denote X1 = identity variable, which takes value 1 every time a (long) noodle becomes a loop by connecting to its end, (if its own end is connected to some other noodle, then that other noodle's end will be considered). Thus, number of loops = X1 +...+ X100, thus, expected number of loops = E(X1) + ... + E(X100). This will give answer = 1/(2N-1) + 1/(2N-3) + ... + 1/3 + 1

where N = 100. This formula can also be proved using induction.

Calculating Probability of single large loop:

If you followed last result, this one is simple, this time all the identitiy variables are zero except last one. Thus probability is [1 - 1/(2N-1)]*[ 1 - 1/(2N-3)]* ... *[1-1/3]

= Product ( i = 2 to N) [ (2i-2) / (2i-1)]

Hard | Probability |

Given the set of numbers from 1 to n: { 1, 2, 3 .. n } We draw n numbers randomly (with uniform distribution) from this set (with replacement). What is the expected number of distinct values that we would draw?

Hint

Linearity of expectation

Answer

E(n) = n[1-(1-1/n)^n]

Solution

Notice that number of distinct points in the produced set is same as number of distinct points selected from the given set {1..n} . For that we denote indicator function Si, that is, Si = 1 if the interger i is taken into produced set.

Let S denote the number of distinct points selected, S = S1+..+Sn

E(S) = E(S1) +...+ E(Sn)

and E(Si) = 1*P(Si) = 1 - (Probability that 'i' is not chosen in any draw)

= 1 - ( Prob that is i is not chosen in one 1st draw)^n = 1 - ( 1 - 1/n )^n

Thus E(S) = n * ( 1 - ( (n-1) / n)^n )

Let S denote the number of distinct points selected, S = S1+..+Sn

E(S) = E(S1) +...+ E(Sn)

and E(Si) = 1*P(Si) = 1 - (Probability that 'i' is not chosen in any draw)

= 1 - ( Prob that is i is not chosen in one 1st draw)^n = 1 - ( 1 - 1/n )^n

Thus E(S) = n * ( 1 - ( (n-1) / n)^n )

Source: CSEblog

Enable Like and Comment Hard | Probability |

What is the expected number of cards that need to be turned over in a regular 52-card deck in order to see the first ace?

Hint

Hint: the locations of the four aces in the deck divide it into the five groups X1, ...,X5.

Answer

53/5

Solution

Define X1,X2…X48, such that Xi = 1 if ith card turns over before 4 aces, 0 otherwise. Thus, total number of cards turned to see first ace = 1 + sum (Xi)

using linearity of expectation, E(X) = 1 + sum ( E(Xi))

Now consider the ith card and the four aces, all the orders are equally likely: X,A,A,A,A Or A,X,A,A,A, or 3 others. They are equally likely when we have no knowledge about position of these Aces with respect of the deck. Hence we have 5 equally likely slots for ith card: 1 A 2 A 3 A 4 A 5. We are interested in 1st slot.

Hence E(Xi) = 1/5 for all i = 1 to 48

Thus E(X) = 1 + 48/5 = 53/5 = 10.6

This can be done by recursive equation f(n) = (4/n)*1 + ((n-4)/n)*(1+f(n-1), where f(n)=expected cards to flip in a deck of n cards, but I definitely can't solve this without a computer.

A shorter explanation is to consider the 52 cards uniformly distributed over (0,1), so on average they're at k/53 for k=1,2,3,…,52. The four aces are on average at 1/5, 2/5, 3/5, 4/5. So 0.2=k/53 implies k=10.6, done!

using linearity of expectation, E(X) = 1 + sum ( E(Xi))

Now consider the ith card and the four aces, all the orders are equally likely: X,A,A,A,A Or A,X,A,A,A, or 3 others. They are equally likely when we have no knowledge about position of these Aces with respect of the deck. Hence we have 5 equally likely slots for ith card: 1 A 2 A 3 A 4 A 5. We are interested in 1st slot.

Hence E(Xi) = 1/5 for all i = 1 to 48

Thus E(X) = 1 + 48/5 = 53/5 = 10.6

This can be done by recursive equation f(n) = (4/n)*1 + ((n-4)/n)*(1+f(n-1), where f(n)=expected cards to flip in a deck of n cards, but I definitely can't solve this without a computer.

A shorter explanation is to consider the 52 cards uniformly distributed over (0,1), so on average they're at k/53 for k=1,2,3,…,52. The four aces are on average at 1/5, 2/5, 3/5, 4/5. So 0.2=k/53 implies k=10.6, done!

Hard | Probability |

x & y are two random points selected uniformly between 0 & 1. Using them, create a point uniformly random in circle of radius 1. (uniform means that the probability density is constant)

Hint

Suppose x & y are outcomes of blackbox. [ x*cos(2 pi y) , x* cos(2 pi y) ] is not a uniform point on disc. Neither is the point (x,y)/sqrt(x^2+y^2) uniform.

Solution

theta = 2pi*x and r = squareroot(y). the take the point as (r*cos(theta),r*sin(theta))

Explanation:

The idea is that the probability of a point to be between r and r+dr is 2pi*r*dr. Hence to choose a radius we need to generate a number from random number generator which follows probability distribution 2*r.To generate random number which follows above probability distribution which follows uniform distribution we simply take the square root of the number generated by uniform distribution.

Explanation:

The idea is that the probability of a point to be between r and r+dr is 2pi*r*dr. Hence to choose a radius we need to generate a number from random number generator which follows probability distribution 2*r.To generate random number which follows above probability distribution which follows uniform distribution we simply take the square root of the number generated by uniform distribution.

Source: Quant Interview

Enable Like and Comment Hard | Probability |

N points are chosen at random on the cicumference of a circle. A convex n-gon (n sided polygon) is drawn by joining these n points. What is the probability that the center of circle lies inside the region of n-gon?

Solution

Source: a nice senior

Enable Like and Comment Latest solved Puzzles

Color Switches Weird Sequences Intersecting Pillars Consecutive sums Scaling a Square Difficulty Level

© BRAINSTELLAR |